Conceptual Knowledge Analysis of ECIS 2024

Yuanyuan (April) Song

Marquette University yuanyuan.song@marquette.edu 0000-0002-5693-0405

Xia Zhao

University of Georgia xia.zhao@uga.edu 0000-0002-5510-9623

Richard Watson

Digital Frontier Partners & University of Georgia richard.watson@digitalfrontierpartners.com 0000-0003-0664-8337

Yancong Xie

RMIT University yancong.xie@rmit.edu.au 0000-0002-7356-4849

Abstract:

Scholarly conferences are important venues for cutting-edge knowledge exchange and dissemination, making the synthesis of their vast outputs highly valuable. This article presents a pioneering initiative at the European Conference on Information Systems (ECIS) 2024, which applies Conceptual Knowledge Analytics (CKA) to the digitized conference proceedings. Building on a graph database comprising 14.3% of ECIS 2024's papers coded by the authors, we showcase CKA's potential to synthesize the conference's knowledge network. A five-level analysis offers a comprehensive view of emerging research trends. This article illustrates the efficiency of knowledge synthesis for advancing the dissemination of scholarly work.

Keywords: Knowledge digitization, Knowledge network, Conceptual Knowledge Analytics, ECIS, Literature review.

1 Digitizing and Synthesizing Conference Knowledge

Scholarly conferences are crucial hubs of cutting-edge ideas and findings. The quick turnaround of submissions and the interactive nature of these events foster the rapid exchange of ideas. Conference proceedings provide a timely overview of the current state of research, insights into emerging trends, and a field's unresolved questions. While many channels exist to access knowledge, such as proceedings, presentations, and conversations with authors, it remains challenging to synthesize conference knowledge and obtain a field-level view of the state of the art. The volume of proceedings published annually, combined with the fragmented nature of public knowledge, exacerbates the challenge.

Social science communities, including IS, are concerned with expanding, refining, and applying their conceptual foundation ¹ to understand and explain social phenomena (Davis, 2000; Gregor, 2006). Knowledge conceptualization highlights the scholarly responsibility of academic communities (Hambrick, 2007). A community's conceptual knowledge represents the core of a discipline and distinguishes itself from other communities (Lee, 2001). Reviewing and synthesizing conceptual knowledge is essential to staying abreast of cutting-edge developments.

To help scholars access and mine this valuable knowledge foundation, Conceptual Knowledge Analytics (CKA) proposes to digitize conceptual knowledge in publications as property graphs to build a digital repository (Watson et al., 2024). Knowledge digitization creates opportunities to develop and apply analytics to process the literature and generate quantified measurements of a knowledge network. Digitization facilitates automating certain literature reviewing tasks, such as finding concept definitions, which reduces scholars' manual effort. Analytics can compute metrics that are infeasible for manual reviews. This paper uses articles from ECIS 2024 to illustrate a synthesis of conference conceptual knowledge.

2 A Pioneering Initiative at ECIS 2024

With the support of the ECIS 2024 conference and program chairs, 14.3% of authors voluntarily coded their accepted proceedings (see Table 1 and Appendix A). The coding followed a suggested framework (Song et al., 2024) and was facilitated by a web-based application.² An example of a coded paper is shown in Figure 1. All coded papers were stored in a graph database of ECIS 2024 knowledge (Table 2). The data were analyzed at five different levels—Concept, Concept-relationship, Model, Theme, and Theory using CKA methods (Watson et al., 2024).³

Table 1 Summary statistics of ECIS 2024 papers

Category	Number
Coded papers with Models	18
Coded papers without Models	32
Total coded Papers	50
Total conference papers	349
Percentage of papers coded	14.3%
Covered conference tracks	22
Total conference tracks	25

Table 2 Graph database details

Category	Number
Nodes	492
Edges	657
Theories	41
Concepts	87
Concept-relationships	102
Definitions	59

¹. A field's conceptual foundation is its assembly of explanatory concepts and propositions (Davis, 2000).

² https://t-rex-graph.org/codasaurus/

³ The ECIS database and five-level analysis are accessible from https://t-rex-graph.org/analysaurus/.

Models 21

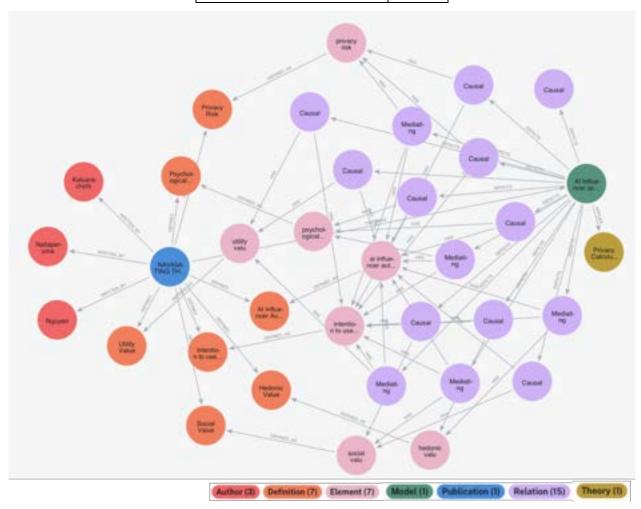


Figure 1 An example of a coded paper (Nallaperuma et al., 2024)

3 Concept Analysis

3.1 What concepts were studied, and how were they defined?

Most concepts (65.5%) have at least one definition (Appendix B). Only three concepts (i.e., Gamification, Social Value, and Trust) are defined more than once (Table 3). Using BERT (Devlin et al., 2018),⁴ their definition similarity was computed.

Table 3 Concepts with more than one definition

Concept	Definition	Similarity	ECIS 2024 Publication
		Score	
Gamification	Gamification refers to the design of information systems that offer experiences and motivations similar to games and consequently attempt to influence user behavior (Koivisto and Hamari, 2019). The use of game design elements in nongame contexts.	0.48	Smeets, M. R., & Roetzel, P. G. (2024). The Moderating Role of Gamification in Reducing Algorithm Aversion in the Adoption of Al-based Decision Support Systems Ixmeier, A., & Kranz, J. (2024). The Effectiveness of Digital Interventions to Promote Pro-Environmental Behaviour: A Meta-Analysis.

⁴ Other transformers could be applied to compute definition similarity.

Social value	The perceived social status or acceptance gained from using Al-generated solutions, a component of perceived value.	0.77	Mehler, M., Ellenrieder, S., & Buxmann, P. (2024). The Influence of Effort on the Perceived Value of Generative Al: A Study of the IKEA Effect.
	The benefits that users derive from the social interactions and connections facilitated by Al influencers.		Nallaperuma, K., Kaluarachchi, C. D., & Nguyen, L. (2024). Navigating the nexus of Authenticity, Value And Risk: A Situational Privacy Calculus Model in exploring the use of Al Influencers.
Trust	The degree to which a person feels that they can rely on the AI to reduce vulnerability and/or uncertainty in a given situation or instance.	0.33	Ellenrieder, S., Ellenrieder, N., Hendriks, P., & Mehler, M. (2024). Pilots and Pixels: A Comparative Analysis of Machine Learning Error Effects on Aviation Decision Making.
	Trust is the willingness to be vulnerable to another party's actions, expecting them to perform an important action, regardless of the ability to control that other party.		Moritz, J., & Schmidt, C. (2024). Trust in algorithmic management: The role of justice and prior discrimination experience.

3.2 What concepts were frequently studied?

Finding concepts commonly studied at conferences is a starting point for understanding current research trends. The number of papers associated with a concept indicates its associated research intensity. *Social value* and *Trust* are studied more than once. In addition to querying the frequency of concept names, concepts may share common words but don't match exactly. Analyzing concept similarity provides further insights (Table 5). Stemming was applied to accommodate wording variances (e.g., sustain is the stem of sustainable and sustainability) (Porter, 2001). The results suggest that ECIS articles examine the perception capabilities or connections, technology usage, and value of information systems and topics such as AI and sustainability.

Table 4 Concepts appearing in more than one article

Concept	Proceeding count
Social value	2
Trust	2

Table 5 Top five common words in concept names

Common words	Associated concepts	Concept count	Publication count
Perceived	Perceived self-efficacy Perceived controllability Perceived value Perceived autonomy Perceived relatedness Perceived competence Perceived humanness	7	3
Use	Behavioral intention to use the technology Intention to use AI Influencer Use of generative AI Screen use for entertainment purposes Screen use for educational purposes Parental screen use for entertainment purposes Parental screen use for work purposes	7	4
Value	Business value (outcome) Perceived value Quality value Emotional value Social value Utility value	7	2
Al	Al recommendation Trust in Al	5	2

	Al influencer authenticity Intention to use Al influencer Use of generative Al		
Sustainability	Sustainability orientation Corporate sustainability beliefs Sustainable IS strategy Sustainable IS practices Sustainable software engineering practices	5	1

4 Concept-relationship Analysis

4.1 What relationships were associated with a concept?

Concept-relationships (i.e., antecedents and consequents) capture the possible cause-effect pairs involving a concept, such as Trust (Table 6),⁵ were examined. Concepts that impact *Trust* include justice-related concepts, information systems design, and human interaction with information systems. The primary outcome associated with *Trust* is *Purchase likelihood*. Linking a sequence of cause-effect pairs forms a potential causal chain.

Table 6 Antecedents and Consequents of Trust-Related Concepts

Туре	Concept	Frequency
	Informational Justice	5
	Interpersonal Justice	5
Antecedent	Robot Design (Emotional vs. Rational)	2
	Interaction with incorrect ML-based DSSs	1
	Explainability	1
Consequent	Purchase Likelihood	2

4.2 Which mediators or moderators were related to a concept?

By pinpointing potential moderators and mediators (Table 7 and Table 8), scholars can decide if they need to discuss them as related literature, explore possible interactions and processes within their research models, and interpret results with a deeper understanding of how and why an effect varies and through which mechanisms it operates.

Table 7 Moderators

Moderator	Associated relationship	Frequency
Discrimination Experience	Algorithmic management -> Informational Justice	2
	Algorithmic management -> Interpersonal Justice	
Type of Task	Algorithmic management -> Interpersonal Justice	1

Table 8 Top three Mediators

Mediator	Associated relationship	Frequency
Prior Need	Use of generative AI ->	3
Satisfaction	Perceived Autonomy	
	Use of generative AI->	
	Perceived Relatedness	
	Use of generative AI ->	
	Perceived Competence	
Cognitive service	Perceived humanness ->	2
satisfaction	Negative emotions	

⁵ Trust-related concepts include: "Human-like Trust", "Trust", "Trust in AI", and "System-like Trust".

	Perceived humanness -> Positive emotions	
Job Identification	Use of generative AI -> Perceived Autonomy	2
	Use of generative AI -> Perceived Competence	

4.3 Which concepts are central to the knowledge network?

Centrality measures quantify a concept's position in a network (Wasserman & Faust, 1994). Outdegree, indegree, and betweenness centralities can inform fundamental antecedents, popular consequents, and influential mediators, respectively (Watson et al., 2024). The fundamental antecedents are mostly Alrelated, suggesting that scholars focused on understanding the impact of Al (Table 9). The popular consequents are outcomes of information systems, such as intention to use and social value (Table 10). Satisfaction and sustainable IS strategy are influential mediators, elucidating causal mechanisms (Table 11).

Table 9 Fundamental antecedents

Concept	Outdegree
Al Influencer Authenticity	10
Use of generative AI	8
Effort in Collaboration	8
Perceived humanness	6
Generative Artificial Intelligence	3

Table 10 Popular consequents

Concept	Indegree
Intention to use Al Influencer	10
Cognitive service satisfaction	5
Trust	5
Social Value	3
Positive emotions	3

Table 11 Influential mediators

Concept	Betweenness
Cognitive service satisfaction	5.5
Sustainable IS Strategy	5.0
Positive emotions	3.0
Trust	3.0
Social Value	1.2

4.4 Which concepts are peripheral in the knowledge network?

The relative position of a concept in a knowledge network highlights its importance or novelty. Concepts with a high periphery index (Wasserman & Faust, 1994) are positioned at the edge of a knowledge network, indicating that they are peripheral or novel and have not been extensively researched (Table 12). The most reported peripheral concepts are those related to *value* and *risk*. Scholars can further explore why these concepts are on the edge and the implications of their periphery positions, for example, do they deal with novel phenomena? How could IS scholars further develop them?

Table 12 Ten Concepts with the Highest Periphery Index

Concept	Periphery Index

Appreciation	1
Emotional Value	1
Hedonic Value	1
Perceived Value	1
Privacy Risk	1
Psychological Risk	1
Quality Value	1
Utility Value	1
Value-for-money	1
Willingness to Pay (WTP)	1

4.5 Which concepts unite fragmented knowledge?

Cut-points (Wasserman & Faust, 1994) connect causal models and unite fragmented knowledge. Removing any of the concepts in Table 13 fragments the network, indicated by the increasing number of disconnected sub-networks. Cut-point concepts represent essential IS knowledge connections; the knowledge network fragments without them.

ConceptNetwork fragmentation
impactEffort in Collaboration7Ability to delay gratification3Generative Artificial Intelligence2Pro-environmental behaviour2

Table 13 Cut-point Concepts

5. Model Analysis

4.6 Which models are most distinguished?

Conceptual isomorphism measures model similarity considering both causal graph structure and concept semantics (Song et al., 2021). We conducted a pairwise similarity analysis of causal models to compute their similarity (i.e., maximum pairwise similarity score) and conformity (i.e., minimum pairwise similarity score). The Similarity index informs how distinct a model is from others, with a lower index suggesting a higher level of uniqueness. Conformity indicates how much a model aligns with other models, with a higher index suggesting a higher level of conformity (Table 14).

The measures of similarity and conformity evaluate the degree of model distinguishability and alignment. Based on similarity and conformity scores, we can classify the models into four categories: emergent divergence, conventional variation, distinctive alignment, and consistent alignment (Table 14). Hierarchical clustering was used to categorize the models (Figure 2 and Appendix C). Emergent divergence models have low levels of similarity and conformity, indicating that they are distinct from other studies and deviate from norms. For instance, Richardson et al. (2024) screen use effects on delayed gratification ability to build a social learning theory. Conventional variation models, despite having relatively similar counterparts, differ from the majority, such as those of Beverungen et al. (2024) and Smeets and Roetzel (2024). Distinctive alignment models lack close parallels but align with most models, such as (Ixmeier & Kranz, 2024; Nallaperuma et al., 2024). Lastly, consistent alignment models demonstrate high similarity and high conformity with other models.

Table 14 Conceptual isomorphism quadrants and representative models

	Low similarity	High similarity
Low conformity	Emergent divergence	Conventional variation
	(e.g., Richardson et al., 2024)	(e.g., Beverungen et al., 2024; Smeets & Roetzel, 2024)

High conformity	Distinctive alignment	Consistent alignment
	(e.g., Ixmeier & Kranz, 2024; Nallaperuma et al., 2024)	(e.g., Oberhofer et al., 2024)

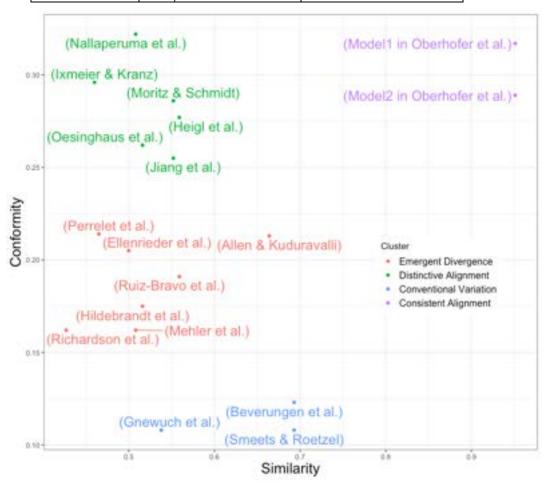


Figure 2 Similarity and Conformity Distribution⁶

5 Theme analysis

5.1 What is the level of knowledge fragmentation?

Network connectivity reveals fragmentation of a knowledge network, measured by concept density, the ratio of the number of concepts shared among models to the total number of concepts. High concept density suggests greater convergence among scholars on concepts of interest, while low concept density suggests fragmentation. Analysis of the coded ECIS articles demonstrates high degree of fragmentation, evidenced by minimal concept overlap across studies (Table 15).

Table 15 Concept Density

Concepts appear in more than one model	11
Concepts total count	82
Density	0.13

⁶ Model 1 and Model 2 (Oberhofer et al., 2024) are about Al support and usage strategy, respectively.

5.2 What is the correspondence between concepts and conference tracks?

The convergence among tracks is rather difficult to discover without the assistance of analytics. We extract the concepts studied in each track and analyze their correspondence through an UpSet diagram (Lex et al., 2014). The left side of the visualization shows the number of concepts in each track. For instance, the *Blockchain and Fintech* track includes 14 concepts. The body of the visual represents, by a solid dot (①), how tracks overlap in terms of related concepts (Figure 3). For example, *Blockchain and Fintech* overlap with *Digital Service Systems*. Vertical bars on the top represent the size of each intersection. For instance, the first column in the matrix indicates that *Blockchain and Fintech* share one concept (i.e., *social value*) with *Digital Service Systems*. There is minimum overlap among tracks on studied concepts, suggesting a high degree of specialization.

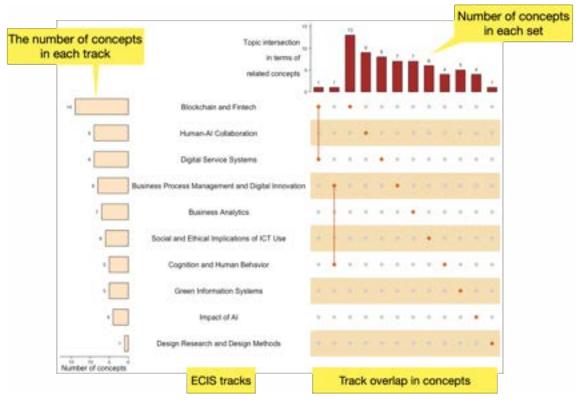


Figure 3 Track Co-occurrence by Concepts

6 Theory Analysis

6.1 What theories were studied?

In the ECIS database, social comparison theory is the most studied with six connections, and the other theories appear only once (Appendix D).

6.2 What is the correspondence among theories?

The tracks share little theories except for social comparison theory, which appears in *Blockchain and Fintech* and *Human-AI collaboration*, as shown in the first column of Figure 4. *Impact of AI*, *IS Innovation, Adoption, and Diffusion*, and *AI in IS* tracks have the highest number of theories, suggesting that scholars tend to utilize theories to study AI and IS innovation.

While there is minimum theory convergence in conference tracks, seven publications utilize multiple theoretical perspectives, as indicated by the number of columns in Figure 5. For instance, Beverungen et al. (2024) discuss *BPM life cycle*, *SECI model*, and *Social technical Environment*. Theories, including *Deterrence Theory*, *Protection Motivation Theory*, and *Metaphors* are addressed by Soliman and Järveläinen (2024).

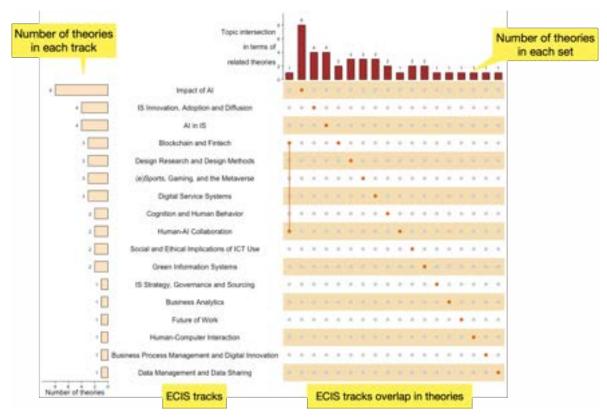


Figure 4 Theory Co-occurrence by Tracks

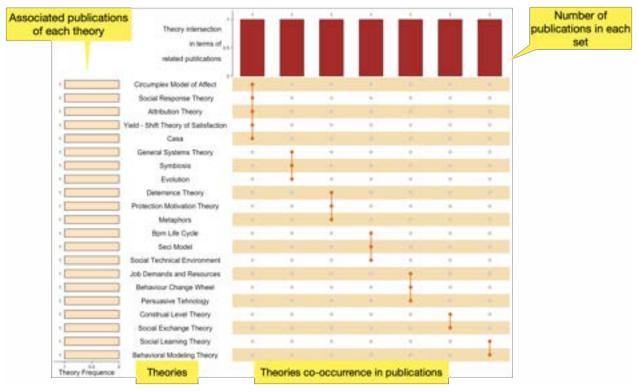


Figure 5 Theory Co-occurrence in Publications⁷

⁷ This visualization excludes papers that discuss only one theory.

7 Summary

We summarize the key lessons learned from the voluntarily coded set of papers at each level (Table 16). Admittedly, the coded papers and summarized lessons only partially represent the ECIS 2024 knowledge (Table 16).

Table 16 Learned lessons from coded EICS 2024

Level	ECIS 2024		
Concept Most concepts are clearly and uniquely defined. A few concepts (e.g. Gamification, Soc			
	Trust) have multiple definitions, with varying levels of definition similarity.		
	ECIS articles examine the the perception of capabilities and connections, usage, and value of		
	information systems and topics such as AI and sustainability.		
Concept-	Understanding the impact of AI was a focus of ECIS 2024.		
relationship	The most studied outcomes of information systems include satisfaction, trust, and social value.		
Model	Models show varying degrees of similarity and conformity.		
	Models can be categorized into emergent divergent, conventional variation, distinctive alignment, and		
	consistent alignment.		
Theme	There is minimal overlap among tracks on studied concepts, suggesting a high degree of		
	specialization.		
	The knowledge network shows high fragmentation, with a concept density of 0.13.		
Theory Social comparison theory is the most studied theory. Tracks rarely overlap with regard to the theories applied.			
			Several publications utilize multiple theoretical perspectives.

8 Discussion

Knowledge analytics requires accurate knowledge coding and no one more suitable to code an article than its authors. Digitizing a conference paper takes 10 to 15 minutes using the supporting software. The digitization included all types of research. Papers with conceptual models were included in all analyses. Papers without models (50% in the case of ECIS 2024 voluntary sample) are included in the theory analysis. Coding current knowledge does not neglect the past because current knowledge is inherently derived from the past. By accurately capturing and analyzing present research, we are implicitly acknowledging and preserving the foundations laid by previous scholars.

A conceptual knowledge analysis of a conference can benefit the IS community in many ways. First, digitization enhances accessibility beyond traditional search methods (e.g., keyword-based searches) to allow direct access to structured conceptual knowledge. This enables researchers to engage with knowledge more efficiently, making i identifying key concepts, theories, and relationships within the literature easier. Second, it reveals patterns and insights and not typically available for a conference's proceedings. Indeed, this report is a first, as far as we are aware. For instance, comparing how similar a model is to a large collection of other models would not be feasible without computational aids. Such reports are also helpful for evaluating the novelty of a submitted article. Third, future research can compare conceptual knowledge reported in different conferences and track knowledge evolvement across time.

Knowledge advances by building on predecessors. Cutting-edge knowledge generated at every year's conferences is a foundation for future research. Our community can build a digitized knowledge repository and produce synthesis reports for conferences and journals. This report on ECIS 2024 serves as the beginning of this initiative. We welcome the community to collectively and comprehensively synthesize IS knowledge and develop computational methods for its analysis. The generalized nature of CKA ensures its applicability to other social sciences.IS can pioneer the s development and dissemination of this new means of managing knowledge.

Acknowledgments

We thank the ECIS 2024 committee and program chairs, especially Stefan Seidel, for their support of digitizing conference knowledge. We also thank the ECIS 2024 authors who have coded their papers. The development of this paper is supported by the Alfred P. Sloan Foundation and Wipfli.

References

- Allen, L., & Kuduravalli, S. (2024). Talking through turf wars: how dialogue helps resolve online co-production disputes. Beverungen, D., Bartelheimer, C., Assbrock, A., & Löhr, B. (2024). Workaround-to-Innovation-Exploring Bottom-up Process Re-Design.
- Davis, G. B. (2000). Information Systems Conceptual Foundations: Looking Backward and Forward. In *Organizational* and Social Perspectives on Information Technology (pp. 61-82).
- Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*.
- Ellenrieder, S., Ellenrieder, N., Hendriks, P., & Mehler, M. (2024). Pilots and Pixels: A Comparative Analysis of Machine Learning Error Effects on Aviation Decision Making.
- Gnewuch, U., Hanschmann, L., Kaiser, C., Schallner, R., & Mädche, A. (2024). Robot Shopping Assistants: How Emotional versus Rational Robot Designs Affect Consumer Trust and Purchase Decisions.
- Gregor. (2006). The Nature of Theory in Information Systems. MIS Quarterly, 30(3).
- Hambrick, D. C. (2007). The field of management's devotion to theory: Too much of a good thing? *Academy of Management Journal*, *50*(6), 1346-1352.
- Heigl, R. M., Weber, P., & Hinz, O. (2024). The TikTok Equation: How Congruence Drives Influencer Marketing Success–A Mixed-Methods Study.
- Hildebrandt, F., Brendel, B., & Dennis, A. (2024). Is it me, or is it you?—How Perceived Humanness Influences Users' Cognitive and Affective Satisfaction with Conversational Agents that Make Errors.
- Ixmeier, A., & Kranz, J. (2024). The Effectiveness of Digital Interventions to Promote Pro-Environmental Behaviour: A Meta-Analysis.
- Jiang, M., Karanasios, S., & Breidbach, C. (2024). Generative AI In The Wild: An Exploratory Case Study of Knowledge Workers.
- Lee, A. S. (2001). Editor's comments: Research in information systems: What we haven't learned. *MIS Quarterly*, 25(4), V.
- Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R., & Pfister, H. (2014). UpSet: Visualization of Intersecting Sets. *IEEE transactions on visualization and computer graphics*, 20(12), 1983-1992.
- Mehler, M., Ellenrieder, S., & Buxmann, P. (2024). The Influence of Effort on the Perceived Value of Generative AI: A Study of the IKEA Effect.
- Moritz, J., & Schmidt, C. (2024). trust in algorithmic management: the role of justice and prior discrimination experience.
- Nallaperuma, K., Kaluarachchi, C. D., & Nguyen, L. (2024). Navigating the nexus of Authenticity, Value And Risk: A Situational Privacy Calculus Model in exploring the use of Al Influencers.
- Oberhofer, V. M., Seeber, I., & Maier, R. (2024). Delegation or Augmentation-Strategies for Working Effectively With Generative Conversational Artificial Intelligence.
- Oesinghaus, A., Elshan, E., & Sandvik, H. O. (2024). The Future of Work Unleashed: Generative Al's Role in Shaping Knowledge Workers' Autonomous Motivation.
- Perrelet, S., Spizzo, M. N., Gertschen, M. M., & Dibbern, J. (2024). sustainable software engineering: a view on strategy and practices for organizational benefits.
- Porter, M. F. (2001). Snowball: A language for stemming algorithms. In.
- Richardson, B., Fife, P. T., Steed, J. D., Crane, C., & Gaskin, J. (2024). The New Marshmallow: The Effects of Screen Use on Children's Ability to Delay Gratification.
- Ruiz-Bravo, N. V., Selander, L., & Roshan, M. (2024). Preparing, Fostering, and Fallowing: Cultivating Digital Safe Spaces.
- Smeets, M. R., & Roetzel, P. G. (2024). The Moderating Role of Gamification in Reducing Algorithm Aversion in the Adoption of Al-based Decision Support Systems.
- Soliman, W., & Järveläinen, J. (2024). Reconceptualizing the Human in the Loop: A Problematization of Taken-for-Granted Metaphors in Cybersecurity Research.
- Song, Y., Watson, R., & Zhao, X. (2021). Literature Reviewing: Addressing the Jingle and Jangle Fallacies and Jungle Conundrum Using Graph Theory and NLP. International conference on information systems 2021 Proceedings, Austin.
- Song, Y., Zhao, X., & Watson, R. T. (2024). Digitised knowledge-based literature reviewing: a tutorial on coding causal and process models as graphs. *Journal of Decision Systems*, 1-12.
- Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications.
- Watson, R. T., Song, Y., Zhao, X., & Webster, J. (2024). Extending the Foresight of Phillip Ein-Dor: Causal Knowledge Analytics. *Journal of the Association for Information Systems*, 25(1), 145-157.

Appendix A: Publication List

Table 17 Coded articles in ECIS 2024

No.	Publications	Track
1	Nguyen, B, Scholta, H (2024). from Text to Model to Execution: a Literature Review on Methods for Creating Conceptual Models from Legal Regulations.	General Track
2	Zeiss, C, Straub, L, Schaschek, M, Winkelmann, A (2024). the Obscure World of Digital Assets ,Al Design Principles for User-Centered Platforms.	Blockchain and Fintech
3	Leffrang, D, Muller, O (2024). Algorithmic Advice-Taking Beyond Mae: The Role of Negative Prediction Outliers and Statistical Literacy in Algorithmic Advice-Taking.	Business Analytics
4	Lippert, I (2024). Artificial Intelligence and the Future of Managerial Work: a Theoretical Review of Managerial Roles.	Future of Work
5	Durani, K (2024). Between Virtues and Vices: An Aristotelian Perspective on Wearable Information Systems.	Health Information Technology and IS for Healthcare
6	Shollo, A, Vassilakopoulou, P (2024). Beyond Risk Mitigation: Practitioner Insights on Responsible Ai as Value Creation.	Impact of Artificial Intelligence on Organizations and Society
7	Oberhofer, V. M., Seeber, I., & Maier, R. (2024). Delegation or Augmentation, AI Strategies for Working Effectively with Generative Conversational Artificial Intelligence.	Impact of Artificial Intelligence on Organizations and Society
8	Birnstiel, S., Steinkamp, L., Dümler, B., & Morschheuser, B. (2024). Designing Gamification for Team Sports: Mapping of the Problem Space and Design Recommendations.	(e)Sports, Gaming, and the Metaverse
9	Safadi, H, Watson, R (2024). Digital Symbiosis: a New Perspective on Digital Ecosystems for Understanding their Influence.	IS Strategy, Governance and Sourcing in the Digital Age
10	Alaerts, L, Reich, R, Pauwels, M, Van Acker, K (2024). Embedding a Circular Economy Monitor in Public Administration.	Green Information Systems and Sustainable Development
11	Johnson, C (2024). Engaging Future Ethical Risk: using Speculative Foresight Techniques to Bridge Epistemic Distance Within the Context of Corporate Digital Responsibility.	Futures: A Novel Site of Inquiry and Imagination
12	livari, N, Hartikainen, H, Ventä-Olkkonen, L, Sharma, S, Lehto, E (2024). Exploring Digital Futures with Children Implications for a Future-Oriented is Research.	Futures: A Novel Site of Inquiry and Imagination
13	Mittermeier, F, Hund, A, Beimborn, D, Frey, J, Hildebrandt, Y (2024). Externalizing Digital Options Thinking: How Corporate Venture Builders Generate Opportunities to Invest in Digital Innovation.	IS Strategy, Governance and Sourcing in the Digital Age
14	Jiang, M, Karanasios, S, Breidbach, C (2024). Generative Ai in the Wild: An Exploratory Case Study of Knowledge Workers Knowledge Workers.	Impact of Artificial Intelligence on Organizations and Society
15	Murlowski, C, Bach, M, Morana, S (2024). Investigating the Everyday Use of Individuals with Augmented Reality.	Social Media, Virtual Worlds, and Digital Work
16	Hildebrandt, F., Brendel, B., & Dennis, A. (2024). Is it Me, or is it You? How Perceived Humanness Influences Users' Cognitive and Affective Satisfaction with Conversational Agents that Make Errors.	Human-Computer Interaction
17	Xie, H, Namvar, M, Risius, M, Akhlaghpour, S (2024). Navigating Implicit Hate Speech - a Scoping Review.	Social Media, Virtual Worlds, and Digital Work
18	Meier, M (2024). Navigating the Landscape of it Threats: a Literature Review and the Road Ahead.	Human-Computer Interaction
19	Nallaperuma, K, Kaluarachchi, C, Nguyen, L (2024). Navigating the Nexus of Authenticity, Value and Risk: a Situational Privacy Calculus Model in Exploring the Use of Ai Influencers.	Artificial Intelligence in IS Research and Practice
20	Ellenrieder, S, Ellenrieder, N, Hendriks, P, Mehler, M (2024). Pilots and Pixels: a Comparative Analysis of Machine Learning Pilots and Pixels: a Comparative Analysis of Machine Learning Error Effects on Aviation Decision Making Error Effects on Aviation Decision Making.	Human-Al Collaboration
21	Ruiz-Bravo, N, Selander, L, Roshan, M (2024). Preparing, Fostering, and Fallowing: Cultivating Digital Safe Spaces.	Social Media, Virtual Worlds, and Digital Work
22	Soliman, W., & Järveläinen, J. (2024). Reconceptualizing the Human in the Loop: a Problematization of Taken-for-Granted Metaphors in	General Track

	Cybersecurity Research.	
23	Mettler, T (2024). Research, Careers, and Greed: An is Perspective on a Human Failing and How it Threatens the Future of the Discipline.	Futures: A Novel Site of Inquiry and Imagination
24	Lefebvre, H, Legner, C (2024). Rethinking Data Governance: a Viable System Model.	Business Analytics
25	Gnewuch, U., Hanschmann, L., Kaiser, C., Schallner, R. (2024). Robot Shopping Assistants: How Emotional Versus Rational Robot Designs Affect Consumer Trust and Purchase Decisions.	Human-Computer Interaction
26	Hanratty, S, Cushen, J, Helfert, M (2024). Self-Regulating Stress in the Professional Workplace: a Review of Purpose, Focus and Design of Universal Digital Interventions.	People First: Constructing Digital Futures Together
27	Perrelet, S, Spizzo, M, Gertschen, M, Dibbern, J (2024). Sustainable Software Development: a View on Strategy and Practices for Organizational Benefits.	Green Information Systems and Sustainable Development
28	Johny, L, Dechant, H, Schneider, J (2024). Taking Data Scientists Out-of-the-Loop in Knowledge Intense Analytics, a Case Study for Product Designs.	Artificial Intelligence in IS Research and Practice
29	Allen, L, Kuduravalli, S (2024). Talking Through Turf Wars: How Dialogue Helps Resolve Online Co-Production Disputes.	Future of Work
30	Weber, M., Knabl, O. B., Böttcher, T. P., Hein, A., & Krcmar, H. (2024). The Al Transformation? Unpacking the Impact of Ai on Incumbent Business Models.	Digital Transformation
31	Ixmeier, A, Kranz, J (2024). The Effectiveness of Digital Interventions to Promote Pro- Environmental Behaviour: a Meta-Analysis Environmental Behaviour: a Meta-Analysis.	Green Information Systems and Sustainable Development
32	Oesinghaus, A, Elshan, E, Sandvik, H (2024). The Future of Work Unleashed: Generative Ai's Role in Shaping Knowledge Workers' Autonomous Motivation.	Artificial Intelligence in IS Research and Practice
33	Mehler, M, Ellenrieder, S, Buxmann, P (2024). The Influence of Effort on the Perceived Value of Generative Ai: a Study of the Ikea Effect.	Cognition and Human Behavior in Information Systems
34	Huang, L, Lin, Y, Peng, J (2024). The Influence of Social Capital and Consumer Empowerment on Online Insurance Purchasing.	Design Research and Design Methods in Information Systems
35	Wolf, L, Madlberger, M (2024). The Influence of Submission Devices on User-Generated Content, a Systematic Literature Review and Weight Analysis.	Cognition and Human Behavior in Information Systems
36	Schütz, F., Lukowitsch, A., Hoevel, G. G., & Trang, S. (2024). The Lower the Risk, the Lower the Premium? Conceptualizing an Artifact for Usage-Based Pricing of Personal Cyber Insurance Policies.	General Track
37	Smeets, M, Roetzel, P (2024). The Moderating Role of Gamification in Reducing Algorithm Aversion in the Adoption of Ai-Based Decision Support Systems.	Artificial Intelligence in IS Research and Practice
38	Richardson, B, Fife, P, Steed, J, Crane, C, Gaskin, J (2024). The New Marshmallow: The Effects of Screen Use on Children's the New Marshmallow: The Effects of Screen Use on Children's Ability to Delay Gratification.	Social and Ethical Implications of ICT Use
39	Cagnelle, J, Pascal, A, Metailler, T (2024). The Paradox Theory in the Digital Transformation of Smes.	Digital Transformation
40	Heigl, R, Weber, P, Hinz, O (2024). The Tiktok Equation: How Congruence Drives Influencer Marketing Success, a Mixed-Methods Study.	Social Media, Virtual Worlds, and Digital Work
41	Moritz, J, Schmidt, C (2024). Trust in Algorithmic Management: The Role of Justice and Prior Trust in Algorithmic Management: The Role of Justice and Prior Discrimination Experience.	Future of Work
42	Kalckreuth, N, Kopka, M, Appel, J, Feufel, M (2024). Unlocking the Potential of the Electronic Health Record ,Äî the Influence of Transparency Features.	Health Information Technology and IS for Healthcare
43	K R, S, Mathew, S (2024). Vision Beyond Sight: Affordances of Assistive Technologies for the Visually Impaired .	Human-Computer Interaction
44	Scheerschmidt, T (2024). Voice Analytics Applications and Corporate Communication Current State and Future Research Directions.	General Track
45	Strobel, G, Banh, L (2024). What Did the Doctor Say? Empowering Patient Comprehension with Generative Ai.	Health Information Technology and IS for Healthcare

46	Beverungen, D., Bartelheimer, C., Assbrock, A., & Löhr, B. (2024). Workaround-to-Innovation Exploring Bottom-Up Process Re-Design.	Business Process Management and Digital Innovation
47	Kruse, P (2024). a Design-Driven Approach to Facilitate University- Sme Cooperation.	Digital Service Systems
48	Pillet, J (2024). a Linguistic Perspective on Al-Generated Scales: Readability, Diversity, and Content Validity Considerations.	Innovative Research Methods

Appendix B: Concept Definitions

Concept	Definition	Publication
Al influencer authenticity	The extent to which an Al influencer aligns with socially constructed ideals and maintains consistency with their established storylines and character-driven narratives	Xie, H, Namvar, M, Risius, M, Akhlaghpour, S (2024). Navigating Implicit Hate Speech - a Scoping Review.
AI recommendation	Recommendation of Al-based DSS to decision maker	Smeets, M, Roetzel, P (2024). The Moderating Role of Gamification in Reducing Algorithm Aversion in the Adoption of Al-Based Decision Support Systems.
Algorithmic management	The delegation of coordination and control functions traditionally performed by managers	Moritz, J., & Schmidt, C. (2024). Trust in algorithmic management: The role of justice and prior discrimination experience.
Appreciation	Reflects the degree to which individuals acknowledge and value a particular aspect, such as the quality or uniqueness of Algenerated content.	Mehler, M., Ellenrieder, S., & Buxmann, P. (2024). The Influence of Effort on the Perceived Value of Generative AI: A Study of the IKEA Effect.
Behavioral intention to use the technology	Indicates individuals' likelihood of using GenAl in the future, based on their experiences and perceptions	Mehler, M., Ellenrieder, S., & Buxmann, P. (2024). The Influence of Effort on the Perceived Value of Generative AI: A Study of the IKEA Effect.
Boosting	Empowering people by expanding (boosting) their competences and thus helping them to reach their objectives	Ixmeier, A., & Kranz, J. (2024). The Effectiveness of Digital Interventions to Promote Pro- Environmental Behaviour: A Meta-Analysis.
Business value (outcome)	Net quantifiable benefit derived from a business endeavor that may be tangible, intangible, or both.	Perrelet, S, Spizzo, M, Gertschen, M, Dibbern, J (2024). Sustainable Software Development: a View on Strategy and Practices for Organizational Benefits.
Corporate sustainability beliefs	The extent an organization takes notice of sustainability issues, such as company's social, environmental, and economic responsibilities.	Perrelet, S, Spizzo, M, Gertschen, M, Dibbern, J (2024). Sustainable Software Development: a View on Strategy and Practices for Organizational Benefits.
Cultivation	Cultivation can refer to the intentional efforts to foster the growth, development, and safeness of individuals or communities within a digital space	Ruiz-Bravo, N, Selander, L, Roshan, M (2024). Preparing, Fostering, and Fallowing: Cultivating Digital Safe Spaces.
Decision-making performance	Performance of decision maker	Smeets, M. R., & Roetzel, P. G. (2024). The Moderating Role of Gamification in Reducing Algorithm Aversion in the Adoption of Al-based Decision Support Systems
Dimension (columns and rows)	Conceptual framework for process innovation	Beverungen, D., Bartelheimer, C., Assbrock, A., & Löhr, B. (2024). Workaround-to-Innovation Exploring Bottom-Up Process Re-Design.
Effort in collaboration	Represents the level of energy, time, or resources invested by participants in the creation of content using GenAl. It influences the perceived value of the final output	Mehler, M., Ellenrieder, S., & Buxmann, P. (2024). The Influence of Effort on the Perceived Value of Generative AI: A Study of the IKEA Effect.
Emotional value	The emotional satisfaction derived from Algenerated solutions, a component of perceived value.	Mehler, M., Ellenrieder, S., & Buxmann, P. (2024). The Influence of Effort on the Perceived Value of Generative AI: A Study of the IKEA Effect.
Fallowing	Temporal suspension and a time to reflect and improve the quality of the space	Ruiz-Bravo, N, Selander, L, Roshan, M (2024). Preparing, Fostering, and Fallowing: Cultivating Digital Safe Spaces.
Fostering	Form of maintenance work aimed at ensuring adherence to the rule systems and protecting norms and beliefs	Ruiz-Bravo, N, Selander, L, Roshan, M (2024). Preparing, Fostering, and Fallowing: Cultivating Digital Safe Spaces.
Gamification	Gamification refers to the design of information systems that offer experiences and motivations similar to games and	Smeets, M. R., & Roetzel, P. G. (2024). The Moderating Role of Gamification in Reducing Algorithm Aversion in the Adoption of Al-based

	consequently attempt to influence user	Decision Support Systems
Gamification	behavior (Koivisto and Hamari, 2019) The use of game design elements in non-	Ixmeier, A., & Kranz, J. (2024). The Effectiveness
	game context	of Digital Interventions to Promote Pro- Environmental Behaviour: A Meta-Analysis.
Genai (generative artificial	Denotes a type of AI that autonomously generates content, such as images or text,	Mehler, M., Ellenrieder, S., & Buxmann, P. (2024). The Influence of Effort on the Perceived
intelligence)	based on patterns and data inputs. GenAl aims to automate tasks traditionally done by	Value of Generative Al: A Study of the IKEA Effect.
	humans	
Generative artificial	The category of sophisticated AI systems that are able to generate new content in	Jiang, M, Karanasios, S, Breidbach, C (2024). Generative Ai in the Wild: An Exploratory Case
intelligence	such form as text, image, video or other creative content by discerning patterns	Study of Knowledge Workers Knowledge Workers.
	within existing data	
Hedonic value	The pleasure and entertainment value that users experience when engaging with Al	Nallaperuma, K., Kaluarachchi, C. D., & Nguyen, L. (2024). Navigating the nexus of Authenticity,
	influencers	Value And Risk: A Situational Privacy Calculus Model in exploring the use of Al Influencers.
Human-like trust	People attribute human-like qualities and characteristics to technologies, researchers	Gnewuch, U., Hanschmann, L., Kaiser, C., Schallner, R. (2024). Robot Shopping Assistants:
	have used this conceptualization of human- like trust to also study trust in technology	How Emotional Versus Rational Robot Designs Affect Consumer Trust and Purchase Decisions.
Informational justice	Informational justice concerns the information and explanations provided in a	Moritz, J., & Schmidt, C. (2024). Trust in algorithmic management: The role of justice and
	specific context	prior discrimination experience.
Intention to use Al influencer	Users' willingness and inclination to engage with Al influencers by following and	Nallaperuma, K., Kaluarachchi, C. D., & Nguyen, L. (2024). Navigating the nexus of Authenticity,
	interacting with them	Value And Risk: A Situational Privacy Calculus Model in exploring the use of Al Influencers.
Interpersonal justice	Interpersonal justice refers to the quality of interpersonal treatment	Moritz, J., & Schmidt, C. (2024). Trust in algorithmic management: The role of justice and
Knowledge	Dialogue that attempts to formulate a	prior discrimination experience. Allen, L, Kuduravalli, S (2024). Talking Through
integration	resolution to a content dispute by	Turf Wars: How Dialogue Helps Resolve Online
	selectively integrating information shared by the community	Co-Production Disputes.
Knowledge staking	Information sharing dialogue that stakes out 'the facts' of a discussion participant's	Allen, L, Kuduravalli, S (2024). Talking Through Turf Wars: How Dialogue Helps Resolve Online
otalg	personal perspective along with a field of	Co-Production Disputes.
	evidence that substantiates their point of view	
Learning approach	Refers to scrutinizing novel but substantial changes experienced by individual KWers.	Jiang, M, Karanasios, S, Breidbach, C (2024). Generative Ai in the Wild: An Exploratory Case
scrutinization		Study of Knowledge Workers Knowledge Workers.
Mental workload	The costs incurred by an individual while accomplishing a task at a certain	Ellenrieder, S., Ellenrieder, N., Hendriks, P., & Mehler, M. (2024). Pilots and Pixels: A
	performance level	Comparative Analysis of Machine Learning Error
Nudging	The use of user-interface design elements	Effects on Aviation Decision Making. Ixmeier, A., & Kranz, J. (2024). The Effectiveness
	to guide people's behaviour in digital choice environments	of Digital Interventions to Promote Pro- Environmental Behaviour: A Meta-Analysis.
Organism	Where evaluation of the congruence of the stimulus takes place	Heigl, R, Weber, P, Hinz, O (2024). The Tiktok Equation: How Congruence Drives Influencer
		Marketing Success , a Mixed-Methods Study.
Organizational benefit	Degree to which employees believe that their organization values their contributions	Perrelet, S, Spizzo, M, Gertschen, M, Dibbern, J (2024). Sustainable Software Development: a
	and cares about their well-being and fulfills socioemotional needs.	View on Strategy and Practices for Organizational Benefits.
Perceived autonomy	The need for autonomy refers to acting with a sense of control over one's behavior. It	Oesinghaus, A, Elshan, E, Sandvik, H (2024). The Future of Work Unleashed: Generative Ai's
adionomy	involves having choices and being the	Role in Shaping Knowledge Workers'
	origin of one's actions rather than being	Autonomous Motivation.

	driven by external forces. For	
Perceived competence	Being able to perform tasks quicker or tackle more complex tasks	Oesinghaus, A, Elshan, E, Sandvik, H (2024). The Future of Work Unleashed: Generative Ai's Role in Shaping Knowledge Workers' Autonomous Motivation.
Perceived value	Represents an individual's subjective assessment or judgment of the worth, utility, or desirability of a product or service. It influences decisions related to usage, purchase, or recommendation	Mehler, M., Ellenrieder, S., & Buxmann, P. (2024). The Influence of Effort on the Perceived Value of Generative AI: A Study of the IKEA Effect.
Preparing	It involves deciding upon guidelines and rules for inclusion and exclusion and requires significant work	Ruiz-Bravo, N, Selander, L, Roshan, M (2024). Preparing, Fostering, and Fallowing: Cultivating Digital Safe Spaces.
Presented stimulus	Presented TikTok Profile with Ad	Heigl, R, Weber, P, Hinz, O (2024). The Tiktok Equation: How Congruence Drives Influencer Marketing Success, a Mixed-Methods Study.
Privacy risk	The potential negative consequences and concerns associated with the collection, storage, utilization, and transmission of personal data by Al influencers	Nallaperuma, K., Kaluarachchi, C. D., & Nguyen, L. (2024). Navigating the nexus of Authenticity, Value And Risk: A Situational Privacy Calculus Model in exploring the use of Al Influencers.
Pro-environmental behaviour	Any behaviour, such as buying sustainable electronics, switching off electronic devices, or using sustainable data centres, that aims to reduce negative impact of human activity on the environment	Ixmeier, A., & Kranz, J. (2024). The Effectiveness of Digital Interventions to Promote Pro- Environmental Behaviour: A Meta-Analysis.
Psychological risk	The potential negative impacts on users' mental well-being and emotional state when engaging with AI influencers	Nallaperuma, K., Kaluarachchi, C. D., & Nguyen, L. (2024). Navigating the nexus of Authenticity, Value And Risk: A Situational Privacy Calculus Model in exploring the use of Al Influencers.
Purchase likelihood	Likelihood of making a purchase	Gnewuch, U., Hanschmann, L., Kaiser, C., Schallner, R. (2024). Robot Shopping Assistants: How Emotional Versus Rational Robot Designs Affect Consumer Trust and Purchase Decisions.
Quality value	The perceived quality of Al-generated solutions, a component of perceived value.	Mehler, M., Ellenrieder, S., & Buxmann, P. (2024). The Influence of Effort on the Perceived Value of Generative Al: A Study of the IKEA Effect.
Relative performance information	RPI enables individuals to evaluate their performance relative to that of their peers (Hannan et al., 2013).	Smeets, M. R., & Roetzel, P. G. (2024). The Moderating Role of Gamification in Reducing Algorithm Aversion in the Adoption of Al-based Decision Support Systems
Response	Response could be Purchase Intention, Attitude, Credibility, Willingness to Purchase	Heigl, R, Weber, P, Hinz, O (2024). The Tiktok Equation: How Congruence Drives Influencer Marketing Success, a Mixed-Methods Study.
Restructured individuals' capability	Is another emerging area where GAI starts restructuring an individual's capability to function like a team.	Jiang, M, Karanasios, S, Breidbach, C (2024). Generative Ai in the Wild: An Exploratory Case Study of Knowledge Workers Knowledge Workers.
Social value	The perceived social status or acceptance gained from using Al-generated solutions, a component of perceived value.	Mehler, M., Ellenrieder, S., & Buxmann, P. (2024). The Influence of Effort on the Perceived Value of Generative Al: A Study of the IKEA Effect.
Social value	The benefits that users derive from the social interactions and connections facilitated by AI influencers	Nallaperuma, K., Kaluarachchi, C. D., & Nguyen, L. (2024). Navigating the nexus of Authenticity, Value And Risk: A Situational Privacy Calculus Model in exploring the use of Al Influencers.
Strategic action	Strategic goals and directions have to be translated into concrete action in order to be effective	Perrelet, S, Spizzo, M, Gertschen, M, Dibbern, J (2024). Sustainable Software Development: a View on Strategy and Practices for Organizational Benefits.
Sustainability orientation	Recognition by managers of the importance of sustainability issues facing their companies .	Perrelet, S, Spizzo, M, Gertschen, M, Dibbern, J (2024). Sustainable Software Development: a View on Strategy and Practices for Organizational Benefits.

Sustainable is practices	Envirnmentally friendly cooperative activities among the members of an organization to address environmental issues, to reduce environmental impact, and then to capture added value that can emerge from these activities.	Perrelet, S, Spizzo, M, Gertschen, M, Dibbern, J (2024). Sustainable Software Development: a View on Strategy and Practices for Organizational Benefits.	
Sustainable is strategy	Sustainability related IS strategies at the organizational and functional levels.	Perrelet, S, Spizzo, M, Gertschen, M, Dibbern, J (2024). Sustainable Software Development: a View on Strategy and Practices for Organizational Benefits.	
Sustainable software engineering practices	The art of defining and developing software products in a way so that the negative and positive impacts on sustainability that result and/or are expected to result from the software product over its whole lifecycle are continuously assessed, documented, and optimized.	Perrelet, S, Spizzo, M, Gertschen, M, Dibbern, J (2024). Sustainable Software Development: a View on Strategy and Practices for Organizational Benefits.	
System-like trust	People can also place trust in a technology's reliability, functionality, and helpfulness (McKnight et al., 2011), which is referred to as system-like trust	Gnewuch, U., Hanschmann, L., Kaiser, C., Schallner, R. (2024). Robot Shopping Assistants: How Emotional Versus Rational Robot Designs Affect Consumer Trust and Purchase Decisions.	
Technical competence	Individual level of technical competence	Smeets, M. R., & Roetzel, P. G. (2024). The Moderating Role of Gamification in Reducing Algorithm Aversion in the Adoption of Al-based Decision Support Systems	
Trust	The degree to which a person feels that they can rely on the Al to reduce vulnerability and/or uncertainty in a given situation or instance	Ellenrieder, S., Ellenrieder, N., Hendriks, P., & Mehler, M. (2024). Pilots and Pixels: A Comparative Analysis of Machine Learning Error Effects on Aviation Decision Making.	
Trust	Trust is the willingness to be vulnerable to another party's actions, expecting them to perform an important action, regardless of the ability to control that other party	Moritz, J., & Schmidt, C. (2024). Trust in algorithmic management: The role of justice and prior discrimination experience.	
Trust in Al	Users' willingness to use an AI system in relevant interactions with the system (Gursoy et al., 2019).	Smeets, M. R., & Roetzel, P. G. (2024). The Moderating Role of Gamification in Reducing Algorithm Aversion in the Adoption of Al-based Decision Support Systems	
Utility value	The perceived usefulness and informational benefits that users gain from interacting with AI influencers	Nallaperuma, K., Kaluarachchi, C. D., & Nguyen, L. (2024). Navigating the nexus of Authenticity, Value And Risk: A Situational Privacy Calculus Model in exploring the use of Al Influencers.	
Value-for-money	The perceived financial worth of Algenerated solutions, a component of perceived value.	Mehler, M., Ellenrieder, S., & Buxmann, P. (2024). The Influence of Effort on the Perceived Value of Generative AI: A Study of the IKEA Effect.	
Willingness to pay (wtp)	Measures how much individuals are willing to spend on a product or service, indicating their perceived value and interest in the offering	Mehler, M., Ellenrieder, S., & Buxmann, P. (2024). The Influence of Effort on the Perceived Value of Generative Al: A Study of the IKEA Effect.	

Appendix C: Model Similarity Scores

Table 18 Aggregated conceptual isomorphism score

No.	Paper	Similarity	Conformity
1	The New Marshmallow: The Effects of Screen Use on Children's the New Marshmallow: The Effects of Screen Use on Children's Ability to Delay Gratification (Richardson et al., 2024)	0.427	0.162
2	The Effectiveness of Digital Interventions to Promote Pro- Environmental Behaviour: a Meta-Analysis (Ixmeier & Kranz, 2024)	0.46	0.296
3	Sustainable Software Development: a View on Strategy and Practices for Organizational Benefits (Perrelet et al., 2024)	0.465	0.214
4	Pilots and Pixels: a Comparative Analysis of Machine Learning Pilots and Pixels: a Comparative Analysis of Machine Learning Error Effects on Aviation Decision Making Error Effects on Aviation Decision Making (Ellenrieder et al., 2024)	0.5	0.205
5	Navigating the Nexus of Authenticity, Value and Risk: a Situational Privacy Calculus Model in Exploring the Use of Ai Influencers (Nallaperuma et al., 2024)	0.508	0.322
6	The Influence of Effort on the Perceived Value of Generative Ai: a Study of the Ikea Effect (Mehler et al., 2024)	0.508	0.162
7	The Future of Work Unleashed: Generative Al's Role in Shaping Knowledge Workers' Autonomous Motivation (Oesinghaus et al., 2024)	0.516	0.262
8	Is it Me, or is it You? How Perceived Humanness Influences Users' Cognitive and Affective Satisfaction with Conversational Agents that Make Errors (Hildebrandt et al., 2024)	0.516	0.175
9	Robot Shopping Assistants: How Emotional Versus Rational Robot Designs Affect Consumer Trust and Purchase Decisions (Gnewuch et al., 2024)	0.538	0.108
10	Trust in Algorithmic Management: The Role of Justice and Prior Trust in Algorithmic Management: The Role of Justice and Prior Discrimination Experience (Moritz & Schmidt, 2024)	0.552	0.286
11	Generative AI in the Wild: An Exploratory Case Study of Knowledge Workers Knowledge Workers (Jiang et al., 2024)	0.552	0.255
12	The Tiktok Equation: How Congruence Drives Influencer Marketing Success ,AI a Mixed-Methods Study (Heigl et al., 2024)	0.559	0.277
13	Preparing, Fostering, and Fallowing: Cultivating Digital Safe Spaces (Ruiz-Bravo et al., 2024)	0.559	0.191
14	Talking Through Turf Wars: How Dialogue Helps Resolve Online Co-Production Disputes (Allen & Kuduravalli, 2024)	0.664	0.213
15	The Moderating Role of Gamification in Reducing Algorithm Aversion in the Adoption of Ai-Based Decision Support Systems (Smeets & Roetzel, 2024)	0.693	0.108
16	Workaround-to-Innovation Exploring Bottom-Up Process Re- Design (Beverungen et al., 2024)	0.693	0.123
17	Delegation or Augmentation, Al Strategies for Working Effectively with Generative Conversational Artificial Intelligence (Oberhofer et al., 2024)	0.951	0.317
18	Delegation or Augmentation, Al Strategies for Working Effectively with Generative Conversational Artificial Intelligence (Oberhofer et al., 2024)	0.951	0.289

Appendix D: Theories in ECIS

Table 19 Theories and their frequency

Theory	Frequency
Social Comparison Theory	6
Affordance Theory	1
Aristotelian Ethics	1
Attribution Theory	1
Behavioral Modeling Theory	1
Behaviour Change Wheel	1
BPM Life Cycle	1
Business Model	1
CASA	1
Circumplex Model of Affect	1
Conceptual Development on Strategic Positioning and	
Relational Gains from Responsible Al	1
Construal level theory	1
Deterrence Theory	1
Digital Options	1
Dooyeweerd philosophy	1
Error Management Theory	1
Evolution	1
Exploratory Theory	1
General Systems Theory	1
IKEA Effect	1
Job Demands and Resources	1
metaphors	1
Need Satisfier Systems	1
Persuasive Technology	1
Privacy Calculus theory	1
Protection Motivation Theory	1
S-O-R Theory	1
Scale Development Theory	1
SECI Model	1
Self-Determination Theory	1
Social Exchange Theory	1
Social Learning Theory	1
Social Response Theory	
Social Technical Environment	1
Stimulus-Organism-Response Model	1
Symbiosis	1
The Nature of Managerial Work	1
Trust Theory	1
Unified Theory of Acceptance and Use of Technology	1
Viable System Model	1
Yield - Shift Theory of Satisfaction	1

About the Authors

Yuanyuan (April) Song is an Assistant Professor at Marquette University and the inaugural WIPFLI Fellow in Artificial Intelligence. Her research interests include mixed-method literature reviewing, healthcare information systems, and artificial intelligence. Her work is published in leading IS journals (e.g., Journal of the Association for Information Systems) and major conferences (e.g., International Conference on Information Systems).

Richard (Rick) Watson is the research director of Digital Frontier Partners and Regents Professor and J. Rex Fuqua Distinguished Chair for Internet Strategy Emeritus of the University of Georgia. He is a former president of AIS and was awarded its highest honor, a LEO. For about a decade, he was the research director for the Advanced Practices Council of the Society of Information Management and a visiting researcher at the Research Institutes of Sweden (RISE). In 2021, the University of Liechtenstein awarded him an honorary doctorate. He is an Honorary Visiting Professor at the Queensland University of Technology and a Schöller Senior Fellow at the University of Erlangen-Nuremberg. Professor Watson has published over 200 journal articles and written books on electronic commerce, data management, and energy informatics. His most recent book is *Capital, Systems, and Objects*.

Xia Zhao is an associate professor of management information systems at the University of Georgia. She received her PhD in management science and information systems from the University of Texas at Austin. Her research interests include the platform economy, IT governance, mobile computing, artificial intelligence, fintech, and knowledge analytics. She has published papers in MIS Quarterly, Information Systems Research, Production and Operations Management, Journal of Management Information Systems, Decision Sciences, Decision Support Systems, Information Systems Frontier, IEEE Computer, and International Journal of Electronic Commerce. She is a senior editor of Decision Support Systems.

Yancong Xie is a lecturer in Information Systems at the Royal Melbourne Institute of Technology (RMIT) University. He obtained his PhD from Queensland University of Technology. Yancong's research interests include generative AI, paradox management, organizational robustness, and simulation for theory building. Yancong has published articles in journals and conferences including Decision Support Systems, Journal of Contingencies and Crisis Management, Sustainability, and International Conference on Information Systems.